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Fourth-order compact differencing is applied to the steady solution of two-dimensional 
viscous incompressible flows at moderate Reynolds number. The physical region where the 
fluid flow occurs is mapped onto a rectangle by means of the boundary-fitted coordinates 
transformation method. The design of the general numerical algorithm rests upon 
discretization of velocity components and pressure field at the same grid points. The validity 
of this procedure is assessed by the investigation of a Stokes test problem. Fourth-order 
numerical results are compared to the analytical solution, second-order results and Chebyshev 
tau approximation. It is shown that fourth-order differences provide good precision, 
particularly when the ability of generating irregular meshes is fully exploited. Standard 
problems as Poiseuille and Couette flows, and the square cavity problem are solved. The 
fourth-order results on coarse mesh compare favourably with other techniques such as finite 
element method and second-order differences. A global convergence analysis was performed. 
On a two-dimensional problem with smooth boundary conditions, one observes a rate of 
convergence of order four for the velocity components and of order three for the pressure. For 
the square cavity problem with the two corner singularities, the rates of convergence are 
decreased by almost an order of magnitude. The solution of a plane constricted channel flow 
enhances the overall improvement in accuracy, gained by the treatment of the geometrically 
complex region through the mapping technique. 

1. INTRODUCTION 

The numerical solution of the Navier-Stokes equations for a viscous fluid flow 
problem in the presence of a free surface represents one of the most challenging tasks 
in fluid dynamics. The problem complexity arises from the geometrically complicated 
form of the domain and from the fact that the surface shape is itself part of the 
solution of the proposed problem. 

In order to avoid the weight of cumulative difficulties, it was decided to treat first 
the problem of geometric complexity by the elaboration of a numerical algorithm 
with sufficient generality and precision to allow its application later on to free surface 
flows. 

The aim of this paper is therefore the numerical study of steady state confined 
flows in complex geometries, bearing in mind the ability of treating free surfaces 
which will be considered elsewhere. Although finite element techniques seem to be the 
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adequate choice for intricated configuration, it is opted for a finite difference 
approach coupled with a transformation method mapping the physical region onto a 
rectangle. 

Since, in the long run, the calculation algorithm should be able to solve free surface 
flows, and since the normal-stress boundary condition calls for the pressure 
knowledge, the velocity components and the pressure are chosen as primary 
variables. 

Previous numerical techniques for viscous-free surface flows with the velocity- 
pressure formulation used a staggered mesh, where the pressure is cell-centered, while 
the velocity components are discretized on the cell boundaries (see, e.g., the MAC 
method [ 1 I). In practice, the pressure is hardly applied at the right surface position 
and this inaccuracy may lead to meaningless results in a long term integration. 
Several improvements have been proposed [2]; however, these algorithms present a 
lack of flexibility to tackle any general form of integration domain. 

In this study, the numerical values of the pressure field and velocity components 
are defined at the same grid nodes. This type of variable placing offers the greatest 
flexibility for the free surface conditions. Furthermore, with this kind of 
discretization, the transformation method proposed by Thompson et al. [3] allows for 
an easy mapping of the physical domain on a uniform rectangle, where the numerical 
integration is carried out. The mapping technique is called the boundary-fitted coor- 
dinates system. It can also be viewed as a useful tool for generating nonuniform 
meshes in regular domains. We insist that the present research was carried out in 
order to solve free surface flows with surface tension at moderate Reynolds number. 
The placing of the pressure and velocity field at the same point eases the fulfillment 
of the free surface boundary conditions, as the free surface is mapped onto a coor- 
dinate line in the transformed plane. 

High Reynolds number flows were not considered in this study. However, the 
results obtained for moderate values (0 to 100) of the Reynolds number show that the 
method seems to be promising for that category of flows. 

Section 2 describes briefly the basic 2-D equations. Various numerical methods for 
the solution of the transformed equations are reviewed when the numerical techniques 
belong to the finite difference approximations with the velocity and pressure defined 
at the same grid node. In this context, fourth-order compact differences offer an 
undeniable interest. Section 3 discusses in detail a test problem issued from the Stokes 
equations solved by variable separation. The model equations written in velocity- 
pressure variables are treated by second-order finite differences, fourth-order compact 
differences and Chebyshev tau approximation. Furthermore, the fourth-order compact 
formulation is coupled with the boundary-fitted coordinates system. The relative 
merits of each technique are considered. It is shown that although the Chebyshev 
method achieves the best accuracy, the fourth-order scheme with the mapping 
procedure constitutes a competitive algorithm which may lead to errors close to those 
produced by the Chebyshev approximation. Section 4 presents the AD1 procedure of 
the general two-dimensional algorithm. The Poiseuille and Couette flows are solved 
with the use of the mapping either to produce nonuniform meshes or to generate a 
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regular region. The resulting errors are small and indicate the excellent global 
accuracy. In Section 5, the well-known square cavity problem is treated by the fourth- 
order method with constant and nonuniform mesh sizes. The particular treatment of 
the pressure singularities at two upper corners of the cavity did not give rise to 
oscillations propagation and did not compromise the good accuracy of the global 
solution. The results are in good agreement with those produced by other numerical 
techniques related to finite difference and finite element methods. One observes that 
the high accuracy of the scheme together with the ability of constructing nonuniform 
grids leads to excellent precision with a coarse discretization net. Moreover, a 
regularized cavity problem with a smooth u velocity distribution on the upper plate 
has been solved. The rate of convergence for this regular case is of order four for the 
velocity components and of order three for the pressure. By contrast, the standard 
cavity presents rates of convergence lowered by almost an order of magnitude. 
Finally, Section 6 demonstrates the feasibility of the general algorithm by the solution 
of a constricted plane Poiseuille flow at moderate Reynolds number for various 
contraction parameters. 

From the previous results, one may conclude that the use of a fourth-order 
accurate difference scheme, coupled with the capability of designing irregular meshes 
in the regions of interest, leads to the elaboration of an efficient algorithm with. the 
velocity-pressure formulation. 

2. THE BASIC 2-D EQUATIONS: REVIEW OF SOME 
VELOCITY-PRESSURE ALGORITHMS 

The physical domain D(.x, y) of the flow is transformed into a rectangle R(& q) in 
such a way that each boundary coincides with a coordinate line r or q = constant 
(Fig. 1). The reader is refered to the Appendix for the theoretical background of the 
mapping technique together with the essential formulas. 

The basic equations are the Navier-Stokes and continuity equations which are 
written in Cartesian coordinates (x, y) of the physical domain. Through the mapping, 
they are transformed in terms of the (r, q) coordinates of the rectangle R(<, q) and 
become, 

-U(Y,U,-Y,U,)/J--v(-x,u,+x,u,)/J-(Y,P,-Y,P,)/J 

+ Rep1 [(cm,, - 2/3ul, + yu,,)/J2 + Pu, + Qu,] = 0, (1) 

-a, VI - J+vJ/J - e--x, vi + XI vJ/J - (-xv Pi + X[ PJJ 

+ Re- ’ [(ml, - 2/3vI, + yv,,)/J2 + Pv, + Qv,] = 0, (2) 

KY,~), - (Yp), + (x&v - (x,v),l/J= 0. (3) 

In (l)-(3), u and v are the Cartesian velocity components in the physical plane, p 
denotes the pressure, Re is the Reynolds number, and [xt , x,, y,, y,, J, a, fi, y, P, Q] 
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FIG. I. Mapping of the physical domain on a rectangle. 

are the geometrical coefftcients associated with the transformation. It should be noted 
that the divergence operator in continuity equation (3) is written in conservative 
form. 

Standard centered finite difference operators of second-order accuracy can be used 
to solve numerically the Navier-Stokes equations (1) and (2), with the natural coor- 
dinates. This research was accomplished by Hodge [4] and Thompson [5] for tran- 
sient problems by means of a computational algorithm coupling an interior Poisson’s 
equation for the pressure and the artificial compressibility technique due to Chorin 
[6] on the boundaries. 

The artificial compressibility technique uses an evolutionary equation 

P (s+l) _ - p(‘) - c2 div v, (4) 

where c* > 0, v is the vector notation for the velocity field, and s is an iteration 
counter. Equation (4) is applied to each discretization point. 
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The previous procedure proposed by Thompson (interior Poisson’s equation and 
artificial compressibility at the walls) is needed because the application of (4) to the 
complete computational domain leads to unbearable oscillations in the pressure field. 
These oscillations come from the second-order centered finite differencing of the div v 
operator, which is written on a regular grid of mesh size h as the following relation: 

(div v)i,jz ui+l,j~“i-l.j + ‘i.j+~&‘i.j-l + o(h2). 

This formula clearly shows the uncoupling of the discrete velocities in two 
independent and intertwined subgrids. Therefore, the pressure computation by Eq. (4) 
at each discretization point leads to oscillations of period 2h. This is the reason why 
Thompson [5] treats a Poisson’s equation for the internal pressure with Dirichlet 
boundary conditions provided by the artificial compressibility scheme (4). However, 
this procedure may generate velocity fields which are not divergence-free, particularly 
in the neighbourhood of the walls. This difficulty to satisfy the incompressibility 
constraint has a straightforward explanation, when one notices that the discrete 
Poisson’s equation is not strictly equivalent to the equation div v = 0. As a matter of 
fact, the discrete second-order centered operators do not verify the identity 

V2 = div(grad) 

and therefore, the Poisson’s equation does not lead necessarily to a rigorous mass 
conservation. These convergence difftculties and the poor precision of the results 
obtained by this algorithm led the present authors to fourth-order compact 
differences, while retaining the placing of the velocity components and the pressure at 
the same node. This last element constitutes to our point of view an essential feature 
to solve a free surface flow properly. The compact operators are characterized by an 
implicit relation between the function values and its derivatives at three consecutive 
points. The implicitness of the operator avoids the uncoupling of the velocities on the 
grid. Furthermore, fourth-order compact operators provide an improved accuracy. As 
a consequence, all the reported computations were performed, on a mini-computer 
with discrete meshes of moderate size, but for the 3 1 x 3 1 and 41 x 4 1 computations 
in the convergence analysis which were run on an IBM 370/158 computer. 

As the behaviour of the pressure-velocity formulation with discretized variables 
attached to the same nodes has been seldom studied, the next section investigates the 
accuracy of several finite difference schemes and of the Chebyshev spectral method 
on a test problem designed and solved with the above assumptions. The emphasis of 
the test bears on the incompressibility condition and not on the nonlinearity of the 
Navier-Stokes operator. 
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3. TEST PROBLEM 

Incompressible fluid dynamics is very much dependent on the way the divergence- 
free constraint on the velocity field is enforced. To discriminate how the spatial 
resolution through the numerical approximation affects the calculation, a steady 
version of a test problem proposed by Gottlieb and Orszag [7] has been devised. 

Let us assume variable separability and suppose that the Stokes equations 
(vanishing Reynolds number) are solved within the slab 0 < x < 1, ---co < y < co. 
The velocity components and the pressure field may be written as, 

v = (u(x) eiky, u(x) eiky), p = p(x) eiky. (5) 

The steady Stokes equations with a forcing term of magnitude one reduce to a 
problem depending only on the x coordinate, 

-P, + WX - kZr.4) + 1 = 0, (64 

-ikp + v(u,, - k*v) = 0, (6b) 

u, + ikv = 0, (‘3~) 

subject to the no-slip boundary conditions v(0) = v( 1) = 0. In Eqs. (6), p denotes the 
pressure divided by the constant density and v is the kinematic viscosity. 

The vertical velocity component can be expressed in terms of u by continuity 
equation (6~) and the pressure can be eliminated between (6a) and (6b). The problem 
described by Eqs. (6) is therefore reduced to a single fourth-order differential equation 
in u, 

2 k* 
U=-. 

V 
(7) 

The boundary conditions are now 

u(0) = u( 1) = U,(O) = a,( 1) = 0. 

The analytical solution of (7) can be written as 

k*vu(x) = 1 - cash kx + [(cash k - l)(sinh kx - kx cash kx) 

+ kx sinh k sinh kx]/(sinh k + k). (8) 

The model problem described by Eqs. (6) has been solved by several numerical 
techniques: second-order finite differences, fourth-order compact differences, and 
Chebyshev spectral methods. In every approximation, the U, u, p variables are 
discretized at the same nodes. 

For second-order finite differencing, classical second-order centered operators were 
used. For fourth-order compact differencing, Kreiss’ scheme (Orszag and Israeli 181, 
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Hirsh [9]) has been considered. In the latter method, the first- and second-order 
derivatives of a function f are approximated by 

f[= {Q/(1 +dh2D+k)]fi, (9) 

j-y= {D+D-/(1 + (1/12)h2D+D-)}f;:, (10) 

where Do.4 = UPh)(f,+ 1 -A-I>, D+fi=(l/h)df;,+,-A), and 0-d = 
(l/h)(f;: - A- ,). Denoting the new unknowns Fi = f; and Si = f f’, the two previous 
equations (9) and (10) lead to the equivalent tridiagonal relationships, 

btFi+, +4F,+Fi-*)=(1/2h)~+,-~-,), (11) 

+(Si+l + lost + si-[)= (llh2)dfi+L -2f + ./-I)* (12) 

Note that the previous relationships are typical of fourth-order compact operators 
and induce an implicit relation between neighbouring function values and its 
derivatives. 

To solve tridiagonal equations (11) and (12) from a given set off;: (1 < i Q N + 1; 
N is the number of intervals), the algebraic system must be closed by boundary 
conditions preserving the tridiagonal character. Equation (13) called the second 
diagonal Pad& approximant, fulfills this condition: 

fi-.fi+l+ (h/2Wi +Fl+l) + (h2112)(Si-Si+l) + o(h5)=o* (13) 

Let US observe that second-order and fourth-order compact differences for the first- 
and second-order derivatives can be cast into a general tridiagonal formulation, 

aF~+,+bF,+aFi-1=(1/2h)df,+,-~-*), (14) 

cs,+1 + dS, + cs,-, = V/~‘)ti+t - 2fi +A-,I* (15) 

For a = c = 0 and b = d = 1, second-order differencing is recovered, while for 
a=b,b=),c=-&,andd=&f ourth-order compact differences are regained. 

With the above remark in mind and using the previous definitions, for an internal 
discretization point (2 < j Q N), the algebraic system takes the form, 

p; + v(k%, - u;‘) = 1, WO 

ikpj + v(k2uj - 07) = 0, (16b) 

-ik(av,+, + bv, + avj-,) = (1/2h)(u,+, - uj-,), (16~) 

UP;+, + bp; + UP;- I= (1/2h)(p,+ 1 - P,- ,), t1W 

~u;+,+du;‘+cu;‘_,=(l/h~)(u,+,-2uj+u,-,), VW 

cu;; 1 + do;’ + co;‘-, = (l/h2)(u,+, - 2u, + u,- i). (16f)- 
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Equations (16a) and (16b) are the Stokes equations. Equation (16~) is obtained from 
(11) applied to U; and combined to the continuity equation. 

At the boundary (node 1, for example), the equations are 

#,=v,=o, 

u, -u* - $ (0, + u*) + (hZ/12)(u; -U;) = 0, 

p; -vu; = 1, 

ikp, - vu; = 0, 

(PI- PM + h*k*/12) + (V~)(P, + PA = 0. 

(17) 

The last equation of (17) is obtained from Padl relation (13) applied to the first 
grid point and by replacing the second-order derivative pxx by k2p as for a Stokes 
flow, the pressure is a harmonic function. 

From (16) and (17), it can be seen that the complete algebraic system presents a 
block-tridiagonal structure, where the blocks are of order six. This system can be 
solved by a direct standard LU factorization (see for example, Isaacson and 
Keller [lo]). The direct solution is made possible because of the variable separability, 
which allows a nonsingular pressure calculation. 

For v = lo-’ and k = 4, Fig. 2a displays the behaviour of the dependent variables. 
Table I shows the relative error on the horizontal velocity component u at x = 0.1 
and 0.5 and the relative error on the pressure at x = 0.0 and 0.4 for second- and 
fourth-order approximations and different values of the interval number. The 
computed divergence is at the level of the computer round-off error. 

The Chebyshev spectral method assumes that the dependent variables may be 
represented in terms of particular orthogonal polynomials, namely, 

u(x) = i u, T,(2x - l), u(x)= t onTn(2x- l), 
n=o n=o 

P = t P,T”(2X - I), o<xg 1, 
n=o 

(18) 

where T,(2x - 1) is the nth-order Chebyshev polynomial of the first kind. The 
discrete equations are obtained by the tau approximation (Gottlieb and Orszag [7]), 

p;’ + v(k’u, - u:‘) = do,, , O<n<N-2, 

ikp, + v(k’u, - ~2’) = 0, O<n<N-2, (19) 

uh” + ikv, = 0, O,<n(N, 

z. 44 = ‘to (-1)” u,= i u,= -f (-l)nD”=O, 
n=O n=o 



498 AUBERT AND DEVILLE 

FIG. 2a. Analytical solution for the Stokes test problem: v = 10m2, k = 4. 

where 6,,, is the Kronecker symbol and 

f”’ denotes the ith-order derivative off in terms of 
the original shifted Chebyshev polynomials. 

If f(x) = Cr= 0 f, 7’,(2x - l), then 

fb” + t PfP,, 
” p=n+1 

p+nodd 

g = n.. fF,P - 11, f !f’ =; .g+2 P(P2 - n2)&. 
p+ilWell 

In these relations, c0 = 2 and c, = 1 for n > 0. 
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TABLE I 

Relative Error on u and p at Fixed Points Inside the [0, l] Interval with Respect to 
I the Order of the Finite Difference Scheme and the Number of Intervals (V = 0.01, k = 4) 

N Order u(O.1) u(O.5) P(O.0) P(O.04) 

10 
20 
30 
40 

10 
20 
30 
40 

2.1(-l) 2.8(-2) 
5.8(-2) 7.8(-3) 
2.6(-2) 3.5(-3) 
lS(-2) 2.0(-3) 

1.8(-3) 4.2(-4) 
1.7(-4) 3.3(-5) 
3.2(-5) 6.4(-6) 
1.05(-5) 2.1(-6) 

4.0(-2) 
l.l(-2) 
5.4(-3) 
3.0(-3) 

5.4(-4) 
4.2(-5) 
9.0(-6) 
2.95(-6) 

1.8(-2) 
5.0(-3) 
2.4(-3) 
1.4(-3) 

3.87(-4) 
2.66(-5) 
5.45(-6) 
1.76(-6) 

Note. The numbers between parentheses are the exponents of the scientific notation. 

FIG. 2b. Analytical solution for the Stokes test problem: v = lo-‘, k = 25 (p* = P X 10, P = 
pressure). 

x71/49/3-IO 



500 AUBERT AND DEVILLE 

It is well known that in absence of singularity, spectral methods offer “infinite” 
convergence since the error goes to zero faster than any finite power of l/N. This 
assertion is confirmed by the solution of problem (6) through the Chebyshev tau 
approximation (19) with the same set of parameters as before (V = lo-*; k = 4). For 
N= 20, the maximum relative error on u occurs at the central point and is 3.10mL4, 
while for N= 10, the maximum relative error is 9.6 lo-‘. A relative error of 5.2 
IO-’ is obtained for N = 8. This error is of the same order of magnitude as that 
produced by a fourth-order compact method with 20 intervals. Therefore, one can 
conclude that for the same achieved accuracy, fourth-order differences need at least 
twice as many degrees of freedom as spectral methods. 

As pointed out in the previous section, boundary-fitted coordinates can take the 
geometric complexity into account and control easily the internal mesh distribution to 
result in a better discretization grid. This last property can prove very interesting in 
regions where high gradients occur. We will compare in the remainder of this section 
the solution of problem (6) with v = lo-’ and k = 25 by the Chebyshev tau 
projection method and the fourth-order compact differencing coupled with 
Thompson’s mapping. The exact solution for u with k = 25 presents a boundary 
layer-type behaviour near the limits, while the velocity profile is almost flat over a 
large part of the unit interval. (Fig. 2b). 

Using the fourth-order compact formulation, the one-dimensional natural coor- 
dinates, and with the help of (A9), it is easy to show that the Stokes problem (16) 
resumes a block tridiagonal form. 

Figure 3 shows the comparison of several grids generated by (A7) with different 
values of (I~ in Eq. (A8). The number of intervals remains constant and is equal to 20. 
For the sake of comparison, the last grid corresponds to the Chebyshev abscissas in 
conjunction with the tau method. The finite difference mesh may be equally spaced or 
nonuniformly distributed. In case of a variable mesh, the mapping results from a 
fourth-order accurate computation. Figure 3 also presents the maximum relative error 
on u for the various computations. One notices that the grid points definition 
influences the results deeply, and the maximum relative error decreases by a factor of 
43 between the calculation on a regular mesh and that carried out on the unequally 
spaced grid characterized by the parameters a, = 350, ci = 0.1. 

We may notice that it is always better to reline the grid in regions of high 
gradients. The precision gain is always noticeable with respect to results obtained on 
an equipartitioned grid. 

Finally, a convergence analysis was carried out on this problem for the deter- 
mination of the effective rate of convergence. Both cases (V = lo-‘, k = 4 and 25) 
solved Eqs. (16) and (17) on equidistant grids with N = 10, 20, 30, 40 and with the 
help of standard second-order operators and 4th-order compact operators, respec- 
tively. For each discretization, L, absolute errors are evaluated for u, v, p with 
respect to the analytical solution (8). The results are reported on log-log diagrams. 
Figure 2c corresponds to the case k = 4 while Fig. 2d presents the test k = 25. 

With the different operators (2nd or 4th order), the first test has a rate of 
convergence of 2.37 and 4.4, respectively, for u, v, p, while the second problem 
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10-2 10-l 1 h 

FIG. 2c. Log-log error plot of u and p for 
the case: v = IO-‘, k = 4. 

EL2 

t 

p2 u2 

p4 

/ 

hl.95 

u4 

~ 

h3.9 h3.9 

FIG. 2d. Log-log error plot of u and p for 
the case: v = lo-*, k = 25. 

reveals a u, v, p convergence of 1.95 and 3.9 for the finest grids. These numerical 
results confirm the theoretical rates of convergence. The compact operators provide 
errors at levels of several orders of magnitude less than those produced by standard 
finite difference formulas for an equal number of degrees of freedom. 

The computed results in this section show that the Chebyshev method offers the 
best accuracy as Chebyshev polynomials satisfy a minimax property in the inter- 
polation theory. However, fourth-order compact differences coupled with the 
boundary-fitted coordinates are very superior to the classical second-order differences 
on uniform meshes, as far as attainable precision and geometric versatility are 
concerned. These are essentially the reasons why the next sections present a 
numerical method for viscous flow by compact differences on boundary-titted coor- 
dinates. 
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3.4(-3)l 2 :: c 2 - = i 50. 

1.7(-3)l ,̂  8 2 2 2  ̂ 3 i 100 

2.6(-4)-  ̂  ̂ = I 250 

1.5(-4)W = - c I 350 

5.7(-4)+6 = _ - ,̂ = ,̂ I 450. 

CHEBYSHEV ABSCISSAE 
2.7(-6)W 2 C I 

0 025 0.5 

FIG. 3. Maximum relative error on u for fourth-order calculations and Chebyshev tau approx- 
imation. 

4. GENERAL TWO-DIMENSIONAL ALGORITHM AND 
NUMERICAL ACCURACY 

As explained in Section 2, the two-dimensional domain D(x, y) is transformed into 
a rectangle R(<, ?I), where the numerical integration of the steady Navier-Stokes 
equations is performed. The rectangular form of the mapped domain comes from a 
particular choice pertinent to the present study. Other general configurations are 
possible (see [3, 51). The discrete grid is characterized by a constant mesh size h = 1, 
and includes (IV+ 1) x (it4 + 1) nodes covering the whole rectangle R({, a) 
(l<r<N+ 1,1,<rl<iW+ 1). 

The governing equations are (l)-(3). The basic boundary conditions are given u 
and u velocity components on the limits of D(x, y), which are compatible with the 
mass flow rate conservation. 

In two dimensions, the computation of the pressure field is no longer as easy as for 
the test problem solved in Section 3 by a direct imposition of continuity equation (3). 
Therefore, the continuity constraint is replaced by transient equation (4) which will 
be equivalent when the convergence is reached (div v = 0). This technique is a 
coherent procedure with respect to the use of fourth-order compact operators, even 
though the U, U, p variables are defined at the same nodes. The steady solutions of the 
previous test problem obtained by using the transient method with Eq. (4) replacing 
(6~) achieve the same accuracy as observed for the compact direct solution, while the 
computing time increases due to the iterative character of the process. This result 
confirms the implicit coupling of the nodes by the 4th-order compact operators and 
allows the use of scheme (4) for the calculation of 2-D flows without the appearance 
of spurious pressure oscillations (see Sections 5 and 6). 

The general algorithm consists in converting the basic steady-state Navier-Stokes 
equations (1) and (2) into a transient form by the introduction of partial time 
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derivatives together with the artificial compressibility method. With this evolutionary 
form, the false transient algorithm due to Mallinson and De Vahl Davis [ 1 l] yields 
efficiently the steady solution. A classical AD1 process is designed. 

Let s denote the iteration counter, dr the time step, c* the artificial compressibility 
parameter, and define auxiliary variables by the expressions, 

4 = (Y, u - x, v)/J - (JWe), (2W 

x = (Y,U - x,uYJ- (Q/Re). (2Ob) 

In Eqs. (20), P and Q are given functions regulating the mesh interval inside the 
domain, (see Appendix). Notice that p will denote the pressure. Hereafter, the 
equations for the first sweep of the AD1 procedure in the < direction are collected. 

a. Equations for an Interior Point (i, j), (2 < i < N, 2 < j < M) 

[ust’/At + y,pi+‘/J- Re-’ ~u;,“/J’]~,~ (214 

= [d/At - ui/’ + uf,,$ + yrpi/J + Re-‘(-2&,, + y~i,)/J*]~,~, 

[uSt’/At -x,pi+‘/J- Re-‘(a$:’ - ~/?v”,~‘)/J*]~,~ 

= [us/At - $4” + v”,x” - xspf,/J+ Reel y~f,,,/J*]~,~, @lb) 

The derivatives uI, vI, pr, ulb, vLL at an internal point are computed by 
relationships like (11) or (12) written in the (r, q) plane with q = const and h = 1. 

The mixed derivative u,~ comes from a tridiagonal equation of type (11) applied to 
f = v, and F= v,(. 

b. Equations for Vertical Walls (i = 1 or N + 1, 2 < j < M) 

The u and v velocities are prescribed on the boundaries. The pressure is evaluated 
by Eq. (21~). The second PadC diagonal approximant (13) supplies adequate 
expressions for the ur and vr boundary conditions, while the quantities ps and v,,~ are 
obtained by means of a third-order Hermite relation given by Elsaesser and Peyret 
[ 121. For example, on a vertical left wall, one has for the ps computation 

ps(i, j) + 2p,(2, j) - (1/2h)(--5p(1, j) + 4~(2, j) + p(3, j)) = 0 + O(h’). (22) 

For the second-order derivatives, the system of equations is closed by using the 
corresponding momentum equation on the boundary. 

c. Equations for Horizontal Walls (j = 1 or M + 1, 1 ,< i < N + 1) 

These boundary lines are treated as in Subsections a and b, with u and v prescribed 
everywhere. The velocity derivatives Us, uI, ull, uII are obtained from u and v 

x51/49/3-11 
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through compact operators. The pressure is again generated by Eq. (4) applied to the 
boundary. 

(i) The algebraic system of the equations describing the < sweep has a block- 
tridiagonal structure where the unknowns are, respectively, u, v, p, I+, v[, pr, uII, vtL, 
V VI’ 

(ii) For the second q sweep, similar equations may be written leading to an 
analogous block-tridiagonal system, with u, v, p, u,, v,, p,,, u,, , v,,~, uI,, as 
unknowns. 

(iii) One should note that the algorithm does not require any boundary 
condition for the pressure and the tangential velocity derivatives to the domain 
contour. As will be seen in Sections 5 and 6, the treatment of the boundary conditions 
can be extended easily to a symmetry axis or to natural outflow conditions. 
Furthermore, the boundary conditions are able to handle problems with discon- 
tinuous distribution of boundary velocities. Note that in Eq. (21~) the divergence 
operator is written under conservative form. This point is essential for cases 
presenting in- and outflow boundaries to enforce rigorous mass conservation in the 
flow region. 

The convergence of the iterative process is governed by stability criteria, which are 
derived by a von Neumann stability analysis. Conditions are 

c2 > 0, 

To test the global numerical accuracy of the proposed algorithm, numerical solutions 
were devised on Poiseuille and Couette flows, where analytical solutions are 
available. 

Inside the domain 0 < X, y < 1, the Poiseuillejlow solution is a quadratic solution, 
u = y( 1 - y). On a uniform mesh, the fourth-order compact method reproduces the 
exact solution to within the machine accuracy. However, as soon as the grid is 
nonuniform and distorted, errors appear from the combined effect of the coordinates 
transformation and the truncation error on the transformed equations. (Note that in 
the r-q plane, the u velocity component is no longer a quadratic.) 

Figure 4 displays for N = 10 (h = lo-‘), a highly distorted grid (ai = 250, ci = 1). 
In that case, the maximum absolute error on u and p is 7.10p6 and lo-‘, respec- 
tively. These values are quite satisfactory and prove that good overall accuracy is 
reached. 

For the Couette jlow problem, if one refers to Cartesian coordinates and if the two 
concentric cylinders are centered at the (-1, -1) point, the theoretical solution has 
the form, 

u = -(A + B/F)(l + Y), v = (A + BF)(l + x), 

p = A2/2F + 2AB log r - B2F/2 + const, p = const 
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FIG. 4. Highly distorted 10 x 10 grid for Poiseuille flow. 

for Stokes flow, where 

A = (l2,R; - L!,Rf)/(Rf, - Rf), 

B = pi - n,)R;R;/(R; -Rf), 

r = [(I +x)’ + (1 + y)*]“*, F= l/r*. 
(23) 

In the previous expressions R,, R,, a,, 0, designate the inner and outer radii and the 
inner and outer rotation velocities of the cylinders, respectively. 

The first Couette test is concerned with the flow around the inner cylinder, in an 
infinite domain (R, = co, L?, = 0). The inner radius is chosen in such a way that 
f2,Rf = 2. The set of parameters in (23) is A = 0, B = 2. The computational domain 
is the square 0 <x, y Q 1, covered by a grid of N x N square cells. 

The second test problem computes the internal flow between the concentric 
cylinders centered at (-1, -1). Setting ai = 0, R, = 0.5, R, = R, = 1, the solution is 
Eq. (23) with A = ! and B = -4. The computation is performed in the quarter of an 
annulus defined by 0.5 < r Q 1 and 0 < 9 < 90 (Fig. 5). The mapping transforms the 
physical region in a regular rectangle where the r and Q = const lines are the analog 
of the r and 8 = const lines. 
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‘0 (X) 

FIG. 5. Discretization grid for Couette flow (N = 10, Ri = 0.5, R, = 1). 

TABLE II 

Maximum Absolute Errors on the Velocity and Pressure Fields in a Couette Flow 
Solved by Fourth-Order Compact Methods with Constant Mesh Size 

Authors N Re Eld Et, % 

Present 10 0 9.0(-7) 9.0(-7) 4.0(-5) 
Present 14 100 7.0(-7) 7.0(-7) 6.0(-6) 

[I21 10 100 8.0(-6) 9.7(-6) 1.6(-4) 
[=I 20 100 7.0(-7) 6.0(-7) 1.4(-5) 

Note. N is the number of intervals in each spatial direction and Re represents the flow Reynolds 
number. 
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TABLE III 

Maximum Absolute Errors of Dependent Variables for a 
Creeping Couette Flow Solved on a Transformed Quarter of Annulus 

N EU E” 5 

6 9.0(-6) 9.0(-6) 3.5(-4) 
10 l.O(-6) l.O(-6) 5.0(-5) 
12 5.0(-7) 5.0(-7) 2.4(-5) 

Both tests are run with the velocity field given on the boundaries. The initial 
internal guess consists of vanishing pressure and velocity fields. 

For the first Couette test, Table II depicts the maximum absolute errors on the 
velocity components and the boundary pressure for Re (defined as a$f/v) = 0, 100. 
The present computations compare favourably to those by Elsaesser and Peyret [ 121 
and corroborate their convergence analysis on the same problem, which shows the 
method achieves fourth-order convergence. 

Table III yields the maximum absolute errors on the dependent variables for the 
second Couette flow, at zero Reynolds number. The small error level confirms 
obviously the excellent global accuracy of the coordinate transformation for a 
nontrivial geometric domain. The errors decay with an O(h4) rate. 

5. THE SQUARE CAVITY PROBLEM 

To assess definitively the accuracy of the general algorithm and its feasibility in 
presence of singularities, the square cavity problem (Fig. 6) is solved by the 
numerical procedure described in Section 4. However, to take the pressure 
singularities at the two upper corners into account, we made a particular choice for 
the boundary conditions which is compatible with the physics of the problem and 
with the use of fourth-order operators. 

In the mathematical continuous problem, the horizontal velocity component u is 
not univocally defined at the two upper corners. This horizontal component is one on 
the interior of r4 while it is zero on the other sides, but at the two points (y = 1, 
x = 0 and x = 1). The vertical component u vanishes on the four walls. To remove 
the indetermination, we impose u = 0 at the two upper corners. This condition 
ensures U, = uyY = 0 on r, and r,. Therefore, the u distribution on the upper lid of 
the cavity is a step function and presents a jump from zero to one in the vicinity of 
the singularities. The conditions U, = a,, = 0 hold on the interior of r4 . 

The numerical process is adapted to the particular treatment of the singularities to 
avoid oscillations propagation in the discontinuities neighbourhood when the U, and 
u computation on r4 is carried out by fourth-order operators. The discretized 
piiblem approaches continuously the step function and is characterized by given 



AUBERT AND DEVILLE 

1, 

/ 
r4 \ 

/ 
/ \ 
/ 
/ \ 

\ 
/ 
/ \ 
/ 
/ 
/ \ 

/ \ 

/ rl 
/ 
/ 

\ 

\ 
/ 

\ 

/ \ 

/ 
\ 
\ 

/ \ 

/ 
\ 

r2 
I/////////////////////,////,///h. 

b 

0 1 
II II 

FIG. 6. Square cavity problem. 

finite values of u, and u,, at the two upper corners. For this discrete model, the 
requirement div v = 0 is demanded at these two points and therefore, u, = 0 as u, 
vanishes identically on r, and r,. The general algorithm of Section 4 allows the 
possibility of imposing tangential velocity derivatives to the contour. With the 
previous choice of u distribution on r.,, we may require 

u,(i,M+ l)=u,,(i,M+ l)=O, 2<i<N. 

Near the two singularities, the u velocity component is approximated on the first or 
last interval by Hermite interpolation through a polynomial of degree four. For 
example, at the left upper corner, we have the following five conditions: 

u(l,M+ l)=O, u(2,M+ l)= 1, u,(l,M+ l)=O, 

u,(2,M+ l)=O, u,,(2,M+ l)=O. 

Pad6 relation (13) yields the u,., value at the singularity 

z&,(1, M + 1) = 12/h? 

From the computational point of view, the algorithm fulfills the condition U, = 0 at 
the two upper corners iteratively by the artificial compressibility scheme that 
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generates at the same time the corner pressures. For example, at the upper left corner 
the pressure is obtained by the next relation (the following equations are written for 
simplicity in the case of a regular grid with mesh size h and may be generalized to 
the c - q formalism) 

P s+l 
1,&f+ 1 = P:,M+ 1 - c’C4>“lltn:+, * (24) 

The first derivative in Eq. (24) is deduced from Padi relation (13), i.e., 

0.0 0.5 1.0 

FIG. 7a. Contour lines of pressure for the square cavity problem; Re = 0 (Stokes flow). 
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The corner second-order derivative in the last equation is derived from the x- 
momentum equation, 

(u,,):$+ I = ReW:,,+ I. 

The converged solution yields u, = 0 at the two upper corners and at every point 
of I’,, and the second-order derivative u,, of the viscous forces is in equilibrium with 
the pressure forces provided by px at the singularities. 

With this special treatment at the singular corners, all the numerical results 
produced by the present method were obtained till the maximum divergence in 
absolute value was less than lo-’ and the pressure fields exhibit no oscillations. See 
Figs. 7a and b for pressure contour lines at Re = 0 and 100, respectively, where 
Re = I/V, for a 21 x 21 grid. 

0 
.- -1.32 +1.67 

4.“l \\\\ \ 
\ 

F 

/ 
y-- / 

-0.025 

I I I 
0.0 0.5 1.0 

FIG. 7b. Contour lines of pressure for the square cavity problem; Re = 100. 
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TABLE IV 

Horizontal Velocity Component at x = 0.1, 0.5 (Re = 0) by Fourth-Order Compact Differences 
and Finite Element Method for the Square Cavity Problem (A’= 20) 

Present Authors [I31 [I31 Present Authors 

Y x = 0.5 x = 0.5 x=0.1 x=0.1 

0 0.0 0.0 0.0 0.0 
0.1 -0.05783 -0.05763 -0.00504 -0.005 13 
0.2 -0.1022 -0.1017 -0.0114 -0.0115 
0.3 -0.1426 -0.1418 -0.0174 -0.0177 
0.4 -0.1798 -0.1787 -0.024 1 -0.0244 
0.5 -0.205 1 -0.2037 -0.0320 -0.0325 
0.6 -0.1967 -0.1953 -0.04 18 -0.0429 
0.1 -0.1159 -0.1146 -0.0535 -0.0574 
0.8 0.0903 0.0915 -0.0377 a.0767 
0.9 0.4655 0.467 1 -0.00448 -0.0327 
1.0 1.0 1.0 1.0 1.0 

For Re = 0, Table IV compares the fourth-order calculation with a finite element 
technique due to Crochet [ 131. This finite element code integrates the Navier-Stokes 
equations within the velocity-pressure formulation through a displacement method 
using 9-nodes Lagrangian elements. Inside the elements, the velocity and pressure are 
represented by biquadratic and bilinear approximations, respectively. At the singular 
corners, the quadrilaterals are degenerated into triangles by superposition of two 
vertices. This procedure allows an elegant treatment of corner discontinuities. Both 
methods have used a 20 x 20 grid. One notices that on the vertical centerline, both 
computations agree to two decimal places. At x = 0.1, the numerical results are close 
to each other for 0 < y < 0.6, and show some discrepancy as one approaches near 
the moving plate. 

A similar behavior appears from the comparison of the results produced by the 
present method at Re = 1 and the computations by Piva et al. [ 141 using a finite 
element method with a nonorthogonal coordinates system. 

We feel that the present fourth-order result is more accurate because reported 
fourth-order computations with the vorticity-stream function formulation (see Rubin 
and Khosla [ 151) yield the same negative sign for the u velocity near the corner. 

In order to demonstrate the real improvement acquired by the design of a judicious 
irregular mesh, Table V examines u values at two selected points (x = y = 0.5, 
x = 0.1 and y = 0.9) for Re = 0. One can see that for the 15 x 15 variable grid 
displayed in Fig. 8, the numerical values approach those computed on the finer grid 
with constant mesh. Notice that the variable grid is created in such a way that near 
the corners, the mesh size is close to & while near the center point, the spatial step is 
A. One.may therefore conclude that a discretization network with a smaller number 
of well distributed points can achieve the same level of accuracy as a finer grid with 
constant spatial step. 
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TABLE V 

Horizontal Velocity Component at Two Selected Points for a 
Stokes Square Cavity Problem with Equally Spaced and 

Nonuniformly Distributed Mesh Points 

N Type of Mesh 

10 Constant 
15 Variable 
20 Constant 

x= y=o.5 x=O.l,y=O.9 

-0.2045 -0.0200 
-0.2049 -0.03 15 
-0.205 1 -0.0327 

Moreover, to estimate the rate of convergence of the general algorithm on a two- 
dimensional problem presenting singularities, a convergence analysis has been 
performed on equipartitioned meshes for the square cavity problem with N = h4 = 10, 
20, 30, 40, respectively. Nonetheless, as the singularities will influence the 
convergence order, this study treats simultaneously the standard problem and a 
regularized cavity [ 161, where a smooth u velocity component is prescribed on the 
top wall r,, namely, 

u(x, 1) = 16x2(x - l)*, 04x< 1. 

FIG. 8. A 15 X 15 variable grid for the square cavity problem. 



COMPACT DIFFERENCES IN NATURAL COORDINATES 513 

TABLE VI 

Global Rate of Convergence for I(, u, and p, on the Standard and 
Regular Square Cavity Problems, for Re = 0, 100 

Type of Problem 

Re=O Re= 100 

Reg Std Ret? Std 

n(u) 3.80 3.15 3.82 3.20 
n(u) 3.94 3.25 3.96 3.30 
n(P) 3.05 2.20 3.04 2.20 

The present analysis follows the guidelines of the numerical analysis by De Vahl 
Davis [ 171 on the benchmark solution of the thermal cavity problem. 

The four used networks share an array of 11 x 11 points, which allows the com- 
parison of U, v, p computed values at the same points. 

The rate of convergence is first evaluated separately for U, D, and p from the 
numerical solutions obtained with N = 10, 20, 40 by the following formula (written 
for the u variable) 

0) = lw(ll~2o - ~loll*lll u40 - ~2oll2)/log 2, 

where n is the convergence order, u1 the u solution produced on a i x i grid and 
]]f]lz = (cf,,=, ]fr,,]2)1’2/Z2 with 1 being the number of points wherefis calculated. It 
should be noted that root mean square deviations between the various solutions 
appear in the previous relationship. This coherent procedure provides the global rate 
of convergence. 

From this computed order of convergence, a reference solution is produced by an 
extrapolation procedure (e.g., for U) 

U ref = (2”(%40 - U20)/(2n(U) - 1). 

Table VI summarizes the computed rates of convergence for U, u, and p at Re = 0 
and 100 for both cavities. 

As far as the regular problem is concerned, the rate of convergence is four and 
three, for the velocities and the pressure, respectively. The loss of one order of 
magnitude for the pressure field is typical of the numerical integration of the 
Navier-Stokes equations. On the standard problem, the same phenomenon occurs, 
but the singularities affect the global convergence and cause a drop of the rate of 
convergence by almost an order of magnitude. Figures 9a and b are logarithmic 
diagrams of u and p L, errors, respectively for Re = 0 and 100. From the comparison 
of both problems, one observes higher error levels on the standard cavity with respect 
to the regular one. 
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FIG. 9. Log-log error plot for the square cavity problem. (a) I( and p error plot for the standard 
problem (U,,P,) and for the regular problem (U,, PR), at Re = 0; (b) u and p error plot for the 
standard problem (US,,, P,) and the regular problem (UR, P,) at Re = 100. 

Table VII gathers u values at the cavity center for the four grids and the pointwise 
rate of convergence. A typical running time on an IBM computer 370/158 is 
5 set/iteration for an N = it4 = 20 cavity; 65 iterations are needed for convergence at 
Re = 0 while 135 iterations are necessary at Re = 100, if the convergence criterion 
requires 1 maxi,i div(v),,,j Q 10m4. 

We may conclude that the particular treatment of the boundary conditions has 
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TABLE VII 

Values of the u Velocity Component at the Cavity Center for the 
Standard and Regular Cavity Problem for Various Grids 

Type of Problem Reg 

Re=O Re= 100 

Std Reg Std 

N Urnid u nlld Unlid umici 

10 -0.165681 -0.204308 -0.1674 I 1 -0.2035 16 
20 -0.165487 -0.205068 -0.161573 -0.208576 
30 -0.165477 -0.205131 -0.161310 -0.208972 
40 -0.165475 -0.205 149 -0.161242 -0.209076 

n(u) 4.01 3.23 4.14 3.33 

Extrap. Value -0.1654744 -0.205161 -0.161220 -0.209 147 

Note. n(u) is the pointwise rate of convergence. The last line provides u extrapolated values. 

guaranteed a good rate of convergence and the use of a fourth-order method offers 
definite improvements over classical finite difference techniques, even for a problem 
with singularity. 

6. FLOW IN A PLANE CONSTRICTED CHANNEL 

Let us consider the flow in a plane channel presenting a cosine contraction 
(Fig. 10). This kind of domain was treated in Cheng [ 181 by a finite element method. 
The channel presents a longitudinal symmetry axis. The boundary is divided into 
three parts whose respective lengths are I,, 1, I,. Each boundary section is described 
by the functions 

Y(X) = fl, O<x<l,, 

=*~~~[1-cos2n(x-1,)], 1, <x < I, + 1, 

= fl, I,+l<x<f,+I,+l. 

The values of the 1 parameter, which is the contraction parameter, are in between 
zero and one. 

The Reynolds number in this case is defined as Re = flow rate/v = 2/v. The in- and 
outflow boundary conditions are the following: 

(i) At the entry, a Poiseuille velocity profile is imposed by the equations 

u = lS(1 - y’), v = 0. (25) 
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FIG. 10. Plane constricted channel. 

The entry pressure comes from an artificial compressibility calculation by (4) that 
converges to U, = 0. 

(ii) At the outflow section, natural boundary conditions are imposed, 

vanishing normal stress: T,, = -p + 2pu, = 0, Wa) 

Poiseuille shear stress: T, = p(v, + u,,) = -3py, (26b) 

where ,u is the dynamic viscosity. 

The outflow velocity components are obtained by Eqs. (21a), (21b). Equation 
(26a) provides the outflow pressure. Note that this procedure provides a vanishing 
reference pressure at node (N + 1, 1) on the fixed wall. The artificial compressibility 
scheme is not applied to the outflow section where, in fact, the equation U, = -u, 
ensures the incompressibility. 

Nonetheless, at moderate Reynolds numbers (Re < loo), the following outflow 
boundary conditions may be set up: 

v=ux=p=o, (27) 

instead of Eqs. (26) and yield the same numerical results. 
The numerical problem solves only the upper part of the flow field by symmetry 

consideration. The I, and I, lengths are chosen suffkiently long to allow a reasonable 
development of the flow far away from the protuberance. Figure 11 shows a 16 X 8 
discretization grid with I, = 3.5, 1, = 7.5, ,I = 0.5 for a Re = 50 calculation. For 
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FIG. 11. Discretization grid for the plane constricted channel flow (N = 16, M= 8, I, = 3.5, 
I, = 7.5, A,= OS), with unevenly distributed cross sections and attraction near the protuberance. 

Stokes flow (Re = 0), I, = 1, = 4.5 were chosen. It should be noted that in the 
boundary-fitted coordinate system computation, the constraint x,(l;, r,r) E 0 leads to 
the generation of r = constant lines which are orthogonal to the symmetry axis. 
Furthermore, it is taken full advantage of the flexibility of the geometric transfor- 
mation method in-order to space irregularly the successive cross sections: the first 
mesh size is two near the entry while the space step is 0.05 at the maximum 
contraction place where the flow undergoes important gradients. On the symmetry 
axis, boundary conditions are 

For Stokes flow (Re = 0), three cases were computed, namely, 1= 0, 0.25, 0.5, 
over a 16 x 8 grid. The ?X = 0 case yields the analytical solution of plane Poiseuille 
flow, with an absolute error on U, U, and p less than 10p5. 

Y 

I 

0.25.. 

t I c 
0 1 2 3 U(Y) 

FIG. 12. Horizontal velocity component in the middle cross section; Re = 0 (Stokes flow). 
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In Fig. 12, one observes the evolution of the horizontal u velocity component in the 
middle section, for various A values. Figure 13 shows the pressure change on the 
longitudinal symmetry axis for increasing A values. Note that the pressure gradients 
near the in- and outflow sections are constant. This indicates that the I, and I, lengths 
provide a good flow development. 

For viscous flows at Re = 50, with 1= 0.5, a recirculation zone appears behind the 
protuberance and a strong pressure gradient develops upstream of the constriction. 
Figure 14 displays u-velocity contours, where a windowing a w h e r e  1 4  1 4  T u 1 h a s e h 1 6 5 3 3 2 6 u i r 2 e h i n u 9   b 7 0 7 7 6   1 4 5  T u 1 5 3 c  0 h 5   T w  ( 1 4  )  T j  0   T r  3 3 . 0 6 6 8  0   T D  3   T r  - 0 . 1 - 3 8 5  T u 1 h a d o w i n g  c o n t o u r s ,  
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FIG. 14. Contour lines of the horizontal velocity component (u) near the constriction (A. = 0.5, 
Re = SO). 
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FIG. 15a. Contour lines of pressure (A = 0.5, Re = 50); global view. 
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FIG. 15b. Contour lines of pressure (A = 0.5, Re = 50); window in the protuberance vicinity. (The 
pressure values are multiplied by 25 in Fig. 15a and 15b.) 
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CONCLUSIONS 

We have investigated steady viscous flows by using fourth-order compact 
differences coupled with Thompson’s transformation inside the velocity-pressure 
framework. Discretized quantities are attached at the same nodes. On a Stokes test 
problem, we show that discretization of pressure and velocity at the same grid points 
leads to meaningful results because of the implicit character and the improved 
accuracy of the fourth-order formulation. Furthermore, the boundary-fitted coor- 
dinates provide the user with a powerful tool to improve by several orders of 
magnitude the accuracy in regions of interest. 

Standard numerical problems as Poiseuille, Couette flow, and the square cavity are 
solved. The numerical results compare favourably with other numerical techniques. 
The flexibility of irregular grid generation is emphasized. 

A convergence analysis carried out on the standard cavity problem reveals a loss 
by about an order of magnitude for the velocity and pressure rates of convergence 
with respect to those obtained for the smooth cavity, where they are of order four and 
three, respectively. 

The final test consists in the evolution of a plane constricted channel flow. This 
last problem shows that the application of finite differencing with a mapping 
technique to the treatment of a geometrically complex flow region falls within the 
realm of feasibility. 

APPENDIX: THE TRANSFORMATION METHOD 

The fundamental idea of Thompson’s transformation [3] is the generation of 
transformed r and rl functions such that each boundary of the physical domain 
D(x, y) coincides with a coordinate line (Fig. 1). This can be achieved by considering 
the < and 1 functions as the solutions of an elliptic partial differential problem, 
namely, 

where, for example &, denotes the a*r/ax*. In Eqs. (Al) and (A2), P and Q are 
given functions regulating the mesh interval inside the domain. The elliptic problem 
satisfies Dirichlet boundary conditions. 

As the numerical integration is performed in the transformed plane, the role of 
dependent and independent variables is interchanged in (Al) and (A2). One gets the 
coupled system, 

axll - 2/3x,, + yx,, + J2(Pxl + Qx,) = 0, 643) 

ay,, - 2/3ytv + YY,, + J2(PY[ + QY,) = 0, (A41 
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with 

a=$)+ y;, P=+%j + YrY,9 7=x:+ y:, J=x,Y, -x,Y~. 
(A5) 

In Eqs. (A3)-(A5), J is the Jacobian of the transformation. It is assumed that J- ’ 
exists and J does not vanish. Iffdenotes a sufficiently differentiable function defined 
on D, the partial differentials are changed to the next relationships, 

fx = (Y,& - y,f,YJv Wa) 

fy = C-x,,.& + x,f,YJv Wb) 
V2f = (a& - Wft, + xr,,)/J’ + Pft + Qf$ G46c) 

Similar expressions hold for other derivatives and operators. 
The one-dimensional natural coordinates, which are used in Section 3, are obtained 

by the 1-D version of Eq. (A3), 

Xf[ + (x$ p(r) = 09 Igy<N+l (A7) 

with appropriate boundary conditions. Here, N is the number of intervals in the 
computational domain. The P function has the form, 

N+l 

P(t) = 2 a, w(t - tf) exp(---c, It - T, I). 
f=l 

VW 

In (A8), the a, and c[ coefftcients are, respectively, the positive amplitude and 
modification factors, which create controlled distortion of the network. The first- and 
second-order derivatives become, respectively, 

fx = fr(xr)C fx, = fr&) - 2 - f&&> - 3* (A9) 
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